Dispersive manipulation of paired superconducting qubits
نویسندگان
چکیده
منابع مشابه
Dispersive manipulation of paired superconducting qubits
Xingxiang Zhou, Michael Wulf,* Zhengwei Zhou, Guangcan Guo, and Marc J. Feldman Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, USA Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, He...
متن کاملMultiplexed dispersive readout of superconducting phase qubits
Yu Chen, D. Sank, P. O’Malley, T. White, R. Barends, B. Chiaro, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, Y. Yin, A. N. Cleland, and John M. Martinis Department of Physics, University of California, Santa Barbara, California 93106, USA California NanoSystems Institute, University of California, Santa Barbara, California 93106, USA Department of Materia...
متن کاملRobust manipulation of superconducting qubits in the presence of fluctuations
Superconducting quantum systems are promising candidates for quantum information processing due to their scalability and design flexibility. However, the existence of defects, fluctuations, and inaccuracies is unavoidable for practical superconducting quantum circuits. In this paper, a sampling-based learning control (SLC) method is used to guide the design of control fields for manipulating su...
متن کاملSuperconducting phase qubits
Experimental progress is reviewed for superconducting phase qubit research at the University of California, Santa Barbara. The phase qubit has a potential advantage of scalability, based on the low impedance of the device and the ability to microfabricate complex “quantum integrated circuits”. Single and coupled qubit experiments, including qubits coupled to resonators, are reviewed along with ...
متن کاملSuperconducting Qubits Ii : Decoherence
This is an introduction to elementary decoherence theory as it is typically applied to superconducting qubits. Abbreviations: SQUID – superconducting quantum interference device; qubit – quantum bit; TSS – two state system
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2004
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.69.030301